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of the rational terms of the two-point formulae (10) and (15), on the other hand, are 
of constant sign throughout the computation. 
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The Numerical Solution of Eigenvalue Problems 
By Theodore R. Goodman 

1. Introduction. Onie method for solving eigenvalue problems on a digital 
computer is to convert the governing differential equations to finite difference 
equations, apply the boundary conditions at either end of the interval, and form a 
secular equation for the unknown parameter (the eigenvalue) by setting the de- 
terminant associated with the resulting set of homogeneous algebraic equations 
for the ordinates of the solution equal to zero. Another way of solving, eigenvalue 
problems is to use the Galerkin method. This consists of assuming the solution to 
be expanded in a complete set of functions satisfying the boundary conditions; 
upon introducing the series into the differential equation and requiring the error 
to be orthogonal to the functions in the set there results an infinite set of homoge- 
neous equations for the coefficients. The secular equation is formed by setting the 
associated determinant equal to zero. These formulations invariably require the 
determination of the roots of a determinant of large order. The methods arise 
naturally out of the very nature of an eigenvalue problem and are seen to utilize 
the capability of digital computers to manipulate matrices of large order. 

A completely different method for solving eigenvalue problems will be presented 
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here which exploits the capability of such machines to solve initial value problems. 
The method is based on a procedure presented by Goodman and Lance Ili for 
solving two-point boundary value problems. In fact, this paper may be considered 
as a supplement to [1], although it can be read independently. 

2. The Eigenvalue Problem. A general system of n linear, ordinary, homoge- 
neous, differential equations may be written 

(1) ti = aij(t, X)yj, i = 1 n, 

where the dot denotes differentiation with respect to the independent variable t, 
and it is understood that repeated indices are to be summed. The parameter X is the 
eigenvalue to be determined. 

Suppose the boundary conditions to be such that, at t = 0, r of the yis, viz.: 
(), - -X- Yr(O) are zero, and at t = T, (n - r) of the yi's, viz.: yg'(T), 

k = 1 ... (n - r), are zero. 
These homogeneous differential equations and boundary conditions constitute 

the eigenvalue problem. 

3. The Method of Solution. For a linear eigenvalue problem, the eigenfunctionls 
are unknown to within a inultiplicative constant. Hence, it is permissible to choose 

(2) Yr+1(0) = 1, 

which fixes this constant. Of course, if the eigenfunctions must be normalized in a 
certain way an adjustment may be made at the end of the calculation. The procedure 
is to estimate the remainder of the initial conditions Yr+2(0), y * (0) as well as 
the eigenvalue X; these estimates are denoted by Yr*+2(0), y., *(0), XA Equa- 
tions (1) can now be integrated as an initial value problem, and the solutions de- 
noted by y,*(t). In general, it will be found that the computed values of yik (T), 
k = 1, *. . , (n - r), namely, y* (T), differ from zero. To obtain the correct solution 
the values of yk ( T) must be made as small as possible. 

Define by.(t) by 

(3) ayi(t) = M~t)- yi*(t), i- = I n, 

and, at the same time, 

(4) 6x= x - . 

Substituting (3) and (4) into (1), there results to a first approximation 

(5) i = aj(t, X*)byj + aii (t, X*)aXyj*. 

These are the equations of differential corrections. The equations adjoint to them 
are 

(6) -;t = aj,(t, X*)Xi 

where the 3yi's and the xi's are related by 

(7) xi(T) yi(T) - i(O)5yi(O) = A T - (t, X*)y1*Xj it. 
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The quantities required are 8Yr+2(0), * - X by,(O), A, from which improved esti- 
mates of yr+2(O), *.*, yn(O), X can be obtained. To obtain (n - r) equations for 
these (n - r) unknowns, (6) is integrated from T to 0 (n - r) times; the result of 
the mth integration is denoted by mxi(t). Equation (7) holds for each integration of 
the adjoint system and this may be expressed by rewriting it as 

(8) mxi( T)yi( T)- mxi(O)byi(O) = A T!!! (t X*)yj*mxi dt. 

The mth time the adjoint equations are integrated, the starting values are chosen so 
that all the xi( T)'s are zero except the coefficient of byim , which is taken to be unity. 
The first summation in (8) then reduces to a single term. Furthermore, in order for 
the homogeneous conditions at t = T to be satisfied, bYim(T) must be set equal to 
-Ym(T). In addition, since the initial data for yi, i = 1 ... r + 1, remain un- 
perturbed, byi(O), i = 1 ... r + 1, are identically zero. Thus (8) becomes 

( 9 ) -Y* (T) - mXk(O )yk(0) = 6X f g (t, X*) yj* xi dt, 

where the summation on k extends from r + 2 to n. Substituting the value of A8 
into (4), and the values of byk(0) into (3), improved values of yi(O) and X are ob- 
tained. The procedure is then repeated until convergence is achieved. The final 
value of X is the eigenvalue, and the final functions y*(t) are the eigenfunctions 
(which may have to be normalized). 

It should be pointed out that the method of differential corrections is equivalent 
(though more elaborate) to Newton's method for obtaining the roots of a tran- 
scendental equation, and, hence, there is no guarantee that convergence will occur. 
Futhermore, unless the initial estimates for the yi*(O)'s and X* are in the correct 
neighborhood i t is possible to converge to some other eigenvalue (if such exists) than 
the one sought. 

4. An Example. Consider the second-order differential equation 

(10) + X2y = 0 
dt2 

subject to the boundary conditions y(O) = y(l) = 0. The eigenvalues are known 
to be X = nr, n = 1, 2, 3 * . In order to apply the method of this paper, the 
equation is first written in tensor form: 

Yi Y2 
(ll) ~~~~~~~~~~~~~~~~~2 

Y2 =- 

subject to the boundary conditions yi(O) = yi(1) = 0. From (2) we assume initial 
data yi(O) = 0, Y2(0) = 1. Since the equation is only of second order it is not neces- 
sary to estimate any initial data whatsoever; the only unknown parameter is X it- 
self. The perturbation equations are 

1)l= 6Y2, 

(12)Y2 = * 2X*bXyy* 
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The equations adjoint to these are 

-x, - -)v~*2X2, 
(13) 

-t2 -X1v 

which are to be solved only once subject to the initial conditions xl(l) 1, 
x2() = 0. 

For this problem, (9) is only one equation, viz., 
I 

(14) * (1) 2x *ax f8*X2d. 

The solutions for this simple case can easily be generated analytically. The 
solution of (11) subject to the given initial data is 

* sin X*t * * 
Y1 + 5) a l >i-*Y2 -cos X t. 

The solution of (12) subject to its initial data is 

(1t3) :11 = cosX*(1 -t) X2 =sinX*(1 -t) 

Substituting (15) and (16) into (14) and solving for A5 yields 

(17) i n* 
sin X* 

That the method is truly equivalent to Newton's method for finding roots is demon- 
strated by this equation, for, by applying Newton's method to the function 
(sin X)/X, a differential correction identical to (17) is obtained. To give an idea of 
the rapidity of convergence, (17) was applied starting with the estimated value 
A * Hi1. The results of successive iterations are shown in Table I. 

5. Remarks. The problem was posed such that the yi's were given at either end 
of the interval 0-T. The method is easily extended if, instead, n - p homogeneous 
linear relations are prescribed between the yi(O)'s and p between the yi(T)'s. 
Indeed, these relations may even involve the unknown eigenvalue X. 

The possibility of solving initial value problems for the purpose of solving eigen- 
value problems was first presented by Fox [2]. The basic difference between his 
method and the one presented here is that Fox works directly with the equations 
of differential correction which are nonhomogeneous, whereas, in the present 

TABLE I 

Results of Successive Iterations of (17) 

1.00000 
3.79400 
2.83711 
3.12001 
3.14145 
3.14159 
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method, the adjoint equations are homogeneous and the nonhomogeneity is post- 
poned to the algorithm (9) for obtaining the corrections. As to which method is 
faster or more efficient, it is not possible at this time to say. Some time later Brown 
[3], in connection with a problem in the theory of hydrodynamic stability, inde- 
pendently introduced a method using initial value problems, but convergence to the 
solution was achieved partially by trial and error so that the method is not fully 
automatic. This objection was overcome by Nachtsheim [41 who used a perturbation 
scheme and iterated to the final solution; he was compelled, however, to estimate 
more constants than are truly required. Although all of these investigators worked 
on the same problem, none of them seems to have been aware of his predecessors. 

The principles of the method presented~here may be applied to solve nonlinear 
eigenvalue problems, since, in solving initial value problems, the computer is in- 
different to linearity. Of course, the equations of differential corrections are linear 
in any case, and so are their adjoints; but in this case the coefficients depend on the 
previous iteration of the eigenfunctions. In nonlinear cases the solution cannot be 
arbitrarily normalized because, in contrast to the linear case, the eigenvalues de- 
pend on the amplitude of the eigenfunctions (e.g., in determining the period of a 
cubic spring). In fact, for nonlinear cases, the eigenvalue problem would have to be 
solved many times in order to grasp this dependence, and the relation between 
the initial value of yr-+ and the amplitude would have to be established from the 
eigenfunctions. It might be pointed out that nonlinear eigenvalue problems cannot 
be solved using methods involving a secular equation (except for periodic solutions 
when one frequency dominates, in which case the method of equivalent lineariza- 
tion.can be used as an approximation), and, in this respect, the present method is 
superior. 
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A Special Technique For The Determination 
of Eigenvalues 

By V. 0. S. Olunloyo 

1. Introduction. We consider the problem of determining anl eigenvalue of pre- 
scribed order of the system 

(1) y" + (x) + My = O, y(O) = y(l) = 0, > 0 

We specifically wish to avoid the eigenvalues of lower order. We may begin with a 
reasoned guess based partly on classical inequalities. The problem then boils down 
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